Extensions 1→N→G→Q→1 with N=C3 and Q=C32×A4

Direct product G=N×Q with N=C3 and Q=C32×A4
dρLabelID
A4×C33108A4xC3^3324,171


Non-split extensions G=N.Q with N=C3 and Q=C32×A4
extensionφ:Q→Aut NdρLabelID
C3.1(C32×A4) = A4×C3×C9central extension (φ=1)108C3.1(C3^2xA4)324,126
C3.2(C32×A4) = C32×C3.A4central extension (φ=1)162C3.2(C3^2xA4)324,133
C3.3(C32×A4) = C3×C9⋊A4central stem extension (φ=1)108C3.3(C3^2xA4)324,127
C3.4(C32×A4) = C62.25C32central stem extension (φ=1)543C3.4(C3^2xA4)324,128
C3.5(C32×A4) = He3.2A4central stem extension (φ=1)549C3.5(C3^2xA4)324,129
C3.6(C32×A4) = A4×He3central stem extension (φ=1)369C3.6(C3^2xA4)324,130
C3.7(C32×A4) = A4×3- 1+2central stem extension (φ=1)369C3.7(C3^2xA4)324,131
C3.8(C32×A4) = C62.9C32central stem extension (φ=1)549C3.8(C3^2xA4)324,132
C3.9(C32×A4) = C3×C32.A4central stem extension (φ=1)54C3.9(C3^2xA4)324,134
C3.10(C32×A4) = C3×C32⋊A4central stem extension (φ=1)54C3.10(C3^2xA4)324,135

׿
×
𝔽